본문 바로가기

분류 전체보기

(114)
[용어정리] self-BLEU (BLEU 를 잘모르신다면, 먼저 보셔야 합니다.) 핵심 문제점언어 모델은 보통 beam search 를 사용해서 K개의 답변을 생성함그런데 그 답변이 죄다 비슷하면 사실 여러 개를 생성하는 의미가 없음즉 다양한 답변을 생성할수록 좋은 모델로 볼 수 있음그러나 답변이 얼마나 다양하게 생성되는지에 대해 평가하는 지표가 없음 해결책목적: K개의 답변을 생성하게 해서 다양성을 BLEU를 활용해서 측정하자방법: K개의 답변끼리 BLEU score 를 각각 측정해서 평균을 내자 예시GPT3에게 답변을 5개 생성하도록 했다 (A, B, C, D, E)모든 조합별로 BLEU score를 구한다.모든 조합: [(A, B), (A, C), (A, D), (A, E), (B, C), ...... (D, E)]조합의 개수는..
[논문이해] ConvGQR: Generative Query Reformulation for Conversational Search 논문명: ConvGQR: Generative Query Reformulation for Conversational Search논문 링크: https://arxiv.org/abs/2305.15645 ConvGQR: Generative Query Reformulation for Conversational SearchIn conversational search, the user's real search intent for the current turn is dependent on the previous conversation history. It is challenging to determine a good search query from the whole conversation context. To avoi..
[error] 파라미터 제대로 frozen 하세요 저처럼 미친 짓하시면 안 됩니다....  잘못된 예시model.requires_grad = False 문제는 위 코드를 넣고 돌려도 에러가 발생하지 않아 GPU 사용량이 달라지거나 파라미터를 따로 확인하지 않는 한,   제대로 된 예시for param in model.parameters(): param.requires_grad = False  어떤 블로그에서 보고 그대로 긁어서 했었는데 그 블로그가 잘못된 것 같아요. 물론 지금 검색해보니 좋은 자료가 많이 나오네요. 제 불찰입니다. 여하튼 반복하지 않기를 바라며 강조해봅니다.
[논문이해] LORA-FA: MEMORY-EFFICIENT LOW-RANK ADAPTATION FOR LARGE LANGUAGE MODELS FINE-TUNING 논문명: LORA-FA: MEMORY-EFFICIENT LOW-RANK ADAPTATION FOR LARGE LANGUAGE MODELS FINE-TUNING논문 링크: https://arxiv.org/abs/2308.03303 LoRA-FA: Memory-efficient Low-rank Adaptation for Large Language Models Fine-tuningThe low-rank adaptation (LoRA) method can largely reduce the amount of trainable parameters for fine-tuning large language models (LLMs), however, it still requires expensive activation m..
[Insight] Successful language model evals 글 제목: Successful language model evals글 링크: https://www.jasonwei.net/blog/evals Successful language model evals — Jason WeiEverybody uses evaluation benchmarks (“evals”), but I think they deserve more attention than they are currently getting. Evals are incentives for the research community, and breakthroughs are often closely linked to a huge performance jump on some evalwww.jasonwei.net 거대언어모델의..
[논문이해] REPLUG: Retrieval-Augmented Black-Box Language Models 논문명: REPLUG: Retrieval-Augmented Black-Box Language Models논문링크: https://arxiv.org/abs/2301.12652 REPLUG: Retrieval-Augmented Black-Box Language ModelsWe introduce REPLUG, a retrieval-augmented language modeling framework that treats the language model (LM) as a black box and augments it with a tuneable retrieval model. Unlike prior retrieval-augmented LMs that train language models with special ..
[논문이해] Detoxifying Text with MaRCo: Controllable Revision with Experts and Anti-Experts 논문명: Detoxifying Text with MaRCo: Controllable Revision with Experts and Anti-Experts논문링크: https://aclanthology.org/2023.acl-short.21/ Detoxifying Text with MaRCo: Controllable Revision with Experts and Anti-ExpertsSkyler Hallinan, Alisa Liu, Yejin Choi, Maarten Sap. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). 2023.aclantholog..
[논문이해] Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context Learning 논문명: Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context Learning논문링크: https://arxiv.org/abs/2311.11551 Adapt in Contexts: Retrieval-Augmented Domain Adaptation via In-Context LearningLarge language models (LLMs) have showcased their capability with few-shot inference known as in-context learning. However, in-domain demonstrations are not always readily available in real scen..